

Indiana University Scintillator R&D for NOvA

Stuart Mufson

C.Bower, J.Karty, J.Urheim, A.Waldron
Indiana University
January 25, 2005

Background

Liquid Scintillator for HEP/Astrophysics

- 1. Primary Scintillant (benzene derivative, e.g. pseudocumene)
 - Atomic/molecular excitations caused by traversing ionizing particle
 - De-excitation produces UV
- 2. Waveshifter(s) (also benzene derivatives, e.g. PPO, POPOP, bis-MSB)
 - Absorb UV, re-emit in visible
- 3. "Filler" Solvent (e.g. mineral oil)
 - Passive component
 - Long attenuation length (relative to other components)
 - To minimize photocathode/volume ratio (save \$)

Indiana Test Chamber: 2×5×58cm³×3cells

- "MINOS liq. scint. Prototype" extrusions w/alternate walls removed
 - cellsize = $2 \text{ cm} \times 5 \text{ cm}$
 - length = 58 cm
 - reflect. = 94% @ 425 nm
- Two Bicron WLS fibers per cell, NO loop
 - 0.8 mm \times 1.22 m
 - All fiber ends flycut (≈polished)
- Hamamatsu 4220 PM
 - Nom. QE=10% @550 nm
 - Optical grease couples fiber to PM
- Trigger on Cosmic Rays (muons, electrons) for the ionizing particles

Results: 1/05

Results: 1/05

• homebrew consistently gives <u>5% more light</u> (for significant \$\$ savings)

• flowing N_2 gives an increase of 15% in light output for <u>both</u> BC517L and homebrew

Model: Scintillator Oil Delivery

Conceptual Design:

- mineral oil delivered by tanker truck to scintillator oil mixing facility
- * scintillants delivered by tanker truck to scintillator oil mixing facility
 - scintillant (pseudocumene) delivered from chemical supplier
 - fluor + waveshifters delivered from manufacturer
- * mixing at chemical mixing facility
- **QC** at mixing facility before shipping
 - ■QC by exposing oil to ¹³⁷Cs and measuring pulse height
- * mixed scintillator oil delivered by heated tanker truck to experimental site in Minnesota

R&D Issues

- From simulations, determine performance requirements to achieve NOvA science goals (#photoelectrons @ far end)
 - > design mix to meet NOvA's needs
 - > optimize mix so that cost is minimized

To optimize scintillator mix: multidimensional parameter space search for a big \$\$ item; best if these requirements were determined early

- Accelerated fiber aging tests in scintillator
 - ➤ likely depends on pseudocumene content in mix; again, best if scintillator composition determined early
 - ➤ Allena Opper at Ohio U asked if she would be interested in this R&D; no reply yet
- Effects of oxygenation on scintillator light yield underway